The Neurology of a Max Effort Lift

One of the keys to successfully completing a maximum effort lift is to not think so much, and just pull and push with all of your might. On the surface it seems really simple. Get this heavy object from point A to point B in a straight line, but all of the moving pieces that are involved in doing a very complex compound movement is actually pretty astounding.

When people are taught about the neurology of contracting a muscle, it’s usually in the form of a diagram like the one you see below:

Classic diagram for how the brain moves a muscle.

Right side of the brain sends a signal down the spinal cord and tells a muscle on the left to contract.

The truth is way more complicated that than. Honestly, when you want to contract just one muscle, your brain is unconsciously doing all of these calculations to figure out all the other things that need to happen for you to contract that muscle and not fall flat on your face.

You can check out my breakdown of this majestic system in my instagram story at this link: Instagram Story

Why Do We Do Balance Tests After an Atlas Correction?

One of the main components of every examination we do with new patients is a video balance test. You can see what that looks like in the video below:

It’s true that our office works with a lot of people who come in with dizziness or balance complaints, but we do this exam on people even if their complaint is low back pain, neck pain, or any other problem you can think of. Why does a chiropractor need to measure the balance of someone with back and neck pain?

The reason is that balance is a really important indicator for the function of your entire nervous system. Large chunks of your brain and spinal cord are devoted to neurons that help to keep you standing all day. When your brain is struggling, balance is one of the key functions that starts to go badly first. At it’s most extreme, you can see balance deteriorate in brain injuries and illnesses like concussion, Parkinson’s Disease, Multiple Sclerosis, and Alzheimer’s Disease.

Balance and the Nervous System

Our state of balance is the net result of multiple senses providing information to the brain. We take standing and walking for granted because it’s so automatic but it takes a ton of brain power to make standing upright work!

  • While you’re standing your foot and ankle muscles are constantly providing feedback to the brain about the angle of your ankles so you can tell if you’re standing on a flat surface or at an angle.
  • At the same time, your eyes and ears are sending messages to the brain about the location of your head. Is it moving? Is it standing still? Are you tilting? The location of your head will change the amount of muscle tension that you need to keep in your spine.
  • Meanwhile, your spine is constantly manipulating the tension in the dozens of of muscles connected to your vertebrae to help find the right balance of standing up straight and maintaining comfort.
  • All of the messages from these areas are being sent to the brain stem and the cerebellum for interpretation. Within fractions of a second, your brain is doing calculations and sending messages back to your muscles to make small little changes and adjustments as needed.

While all of this happening subconsciously, the higher level brain centers are busy with things like talking, listening, thinking about what’s for dinner, or any other thing that may be on your mind. Your brain separates these unconscious processes so you can do multiple things at once.

By measuring your balance, we can figure out what part of your nervous system may be dysfunctional. 

The 3 super systems that maintain your balance

Balance is Linked to….

The systems that come together to form your sense of balance are your vestibular, visual, and proprioceptive systems. All of these systems send signals and stimulate the brain to take action in it’s internal and external environment.

Disruptions to this system doesn’t necessarily mean that you will feel dizzy and off balance. Your body is really good at compensating when you lose one of those senses. How does your body compensate for a loss of some of your balance receptors?

By changing the posture of your body.

As your body makes these postural changes, then you may start to feel tightness in some of your back muscles in some areas more than others. It may lead to a lower hip on one side and a tilted head on another side. 

Disruptions in these systems may also contribute to problems outside the spine. The neurological connections between the vestibular system and proprioceptive systems are also related to things like your heart rate, digestive tract, and control of blood pressure.

The best part about this is that balance can change really quickly. Even within a single atlas correction.

We Measure Everything

So why do we measure balance? Because we want to measure every meaningful datapoint that may contribute to getting our patients a successful outcome.

We can and do measure someone’s pain and symptoms, but pain and symptoms is not always a good indicator of someone’s level of improvement.

You can feel a lot better after an adjustment but your balance measurements are still far from optimal. If a patient stops working when they feel better, they are leaving a lot of improvements on the table that may contribute to a long term outcome.

On the flip side, someone’s balance and posture may improve relatively quickly, but their body still experiences pain. In some of these cases their body may need more time for nerve, muscle, and other tissues to heal.

That’s why we measure everything to get a complete picture. If we only relied on one metric, we may miss the whole picture.


Chiari Symptoms, Cerebral Spinal Fluid, and the Atlas

Arnold-Chiari malformation is a condition in which portions of the brain (the brain stem or cerebellum) descend below the skull and into the spinal canal. You can see an image of a normal brain MRI and a classic Chiari malformation shown below.

Comparison of a normal appearance MRI vs one that has a herniated cerebellar tonsil characteristic of Chiari malformation

The estimated prevalence for Chiari is about 1 in 1000 people. The good news is that this issue doesn’t cause a problem in most people. Many times people will show a Chiari while getting an MRI for a problem like neck pain, and the Chiari is just an incidental finding.

When a Chiari is causing problems, it can cause non-specific symptoms like:

  • Headache
  • Balance problems
  • Drop attacks
  • Dizziness and Dyscoordination
  • Ringing in the ears
  • Muscle weakness
  • Neck pain
  • Scoliosis

Many patients are born with this brain abnormality, but things like spinal taps and head/neck trauma have been shown to cause cerebral spinal fluid abnormalities that cause the brain to descend into the spinal canal. 

Identifying the Problematic Chiari

Because Chiari symptoms are non-specific in nature and because so many Chiaris are asymptomatic, you can’t diagnose someone’s problem by symptoms or imaging alone. So how do you know if Chiari is causing your problem?

A 2007 study published in the journal Radiology showed that a cerebrospinal fluid flow study can help differentiate symptomatic vs asymptomatic patients. In this study, patients with symptomatic chiari will show blockages in cerebrospinal fluid in the area of the herniated brain tissue. You can see a video example below:

A part of your brain called the choroid plexus is constantly producing cerebrospinal fluid from circulating blood flow. In cases of chiari, the pressure from cerebral spinal fluid pushes against the skull and the brain. Since the skull is solid after childhood, the pressure from the fluid is going to compress the brainstem and cerebellum leading to the symptoms we discussed before.

Prolonged pressure from cerebrospinal fluid can force it’s way into the spinal cord creating a lesion in the spinal cord called a syrinx. These syrinxes can cause pain and loss of sensation into the arms and legs in some cases. In other cases, they are not symptomatic at all.

Image result for syringomyelia and chiari
Chiari + spinal cord syrinx

In the case that someone has chiari, syringomyelia, and chiari type symptoms, a surgical procedure to expand or remove parts of the skull and the protective covering of the brain can be done to alleviate this pressure.

Can Chiari symptoms be addressed conservatively?

This can be a tough question to answer for a few reasons.

Chiari is not symptomatic in a lot of people, and the symptoms of chiari are symptoms that commonly arise in a variety of pain and balance disorders. It’s hard to tell if a treatment actually addressed the consequences of chiari or by another reason.

Additionally, traditional chiropractic high-velocity manipulation is considered a contraindication to chiari malformations. The rationale for this is that a forceful maneuver to the neck may worsen or exacerbate the pressure to the brain stem. There’s no real data to support this, and there are even a few case studies showing no harmful effects. Plus, considering how many patients likely have an asymptomatic chiari and get chiropractic, it seems unlikely that someone with a small chiari would be an absolute contraindication.

But let’s just assume that high-velocity low-amplitude manipulation is problematic. Is there room for a low-force procedure to help?

Some of the work done by Dr. Scott Rosa using upright MRI suggests that a low-force upper cervical technique is more than just safe, but it may help patients with symptomatic chiari.

Craniocervical alignment and Spinal Fluid

There’s a theory that traumatic injuries to the neck like those seen in whiplash can cause susceptible patients with shallow skull bases to have their cerebellum protrude into the foramen magnum.

Michael Flanagan wrote about this concept and how the top of the neck called the craniocervical junction could be a potential choke point for the normal flow of cerebrospinal fluid in the brain. 

Not only can a chiari cause this blockage in spinal fluid, but misalignments in the top of the neck can create this blockage and potentially create the environment to cause or worsen a chiari after trauma. You can see a cool pre and post adjustment video from one of Dr. Rosa’s patients below.

Pre and post cerebrospinal fluid changes after upper cervical alignment

Not only has Dr. Rosa noted changes in cerebrospinal fluid movement, he has also recorded changes in the size of a chiari by using MRI scans after an adjustment. It’s actually pretty amazing to see!

Chiari Might Be More Implicated in Pain and Illness Than We Thought

Thanks to new methods of neuroimaging, scientists are able to see the how spinal fluid impacts brain motion with some startling visibility. The video you below shows how each heart beat creates a pulsing motion of cerebrospinal fluid in the brain of a patient with chiari.

New imaging technique showing the how CSF motion can move the brain

A study using this technique showed alterations in normal brain biomechanics related to changes in how the chiari affects cerebrospinal fluid pressure. The study was only done on one patient, but more work is being done to investigate this phenomenon.

There is also evidence that upright imaging may show that more patients have a chiari than anticipated in patients in whiplash.

Historically, non-specific nature of chiari symptoms have been reason to dismiss it as an entity that can cause pain and illness, but from the experience of many craniocervical chiropractors, there may be more people with this problem that can get relief from a gentle approach to the upper neck.

New Research Shows Concussion + Neck Injury = Longer Recovery

If you’re a reader of our blog, then you’re aware of our stance that an injury strong enough to concuss is strong enough to also injure the neck. You can read some of our thoughts on this subject here:

2 Reasons Why Your Concussion Symptoms Aren’t Going Away

Head Injury, Chronic Dizziness, Concentration Problems, and the Atlas – A Case Study

What a 10 mph car accident does to the neck

You can find a lot more by using the search tool on the website, but that should get you started.

 After years of research, we now know that injuries to the neck can mimic symptoms seen in concussion. This is a big reason why patients with chronic whiplash look really similar to patients with post-concussion syndrome when you’re just looking at symptoms alone [source]. However, many clinicians have suspected that when patients have both a neck injury and a brain injury, that it can take longer for the patient to recover and return to sport.

A study published in the Journal of Head Trauma Rehabilitation is helping to shed light on this concept. THe study looked at patients in a multidisciplinary pediatric concussion clinic with sports related concussion. A total of 246 patients were included and were assessed for neck pain, headache, dizziness, and abnormal cervical spine exam findings. Out of the 246 patients with concussion, 80 met the criteria for a neck injury.

When reviewing the data, the authors found that patients with a neck injury took an average of 28.5 days to make a clinical recovery compared to 17 days for the patients who only showed physiologic brain injury alone. Patients with neck injury were also almost 4 times more likely to experience delayed recovery (longer than 4 weeks) from their symptoms.

So just to summarize, if you have a neck injury + concussion:

  • It will take on average 10 days longer to make a clinical recovery than a concussion alone
  • You are 4 times more likely to have symptoms beyond 30 days than a concussion alone

So you might be saying….well…maybe some of these neck injuries were really serious ones. Like the ones you might see where people have to wear a neck brace and get carted off the field. Obviously people with severe neck and spinal cord injuries can drastically skew the number of days it takes for people to recover and some may not recover at all.

The authors actually accounted for these types of injuries. One patient had a compression fracture and 5 patients had spinal cord injury or cord neuropraxia. All of these patients were taken out of the data analysis. So that leaves us with patients with a neck injury, but an injury that compromises the spinal cord.

Protect the Neck

The role of the neck has become a growing area of research in the field of head trauma. One study looking at the relationship between neck strength and risk for concussion showed that for every pound of increase in neck strength, there was a 5% reduction in risk of concussion. Another study shows a rehabilitation program that includes treating the neck in patients with post-concussion symptoms can accelerate a patients return to normal activity.

The neck is a neurologically important and inherently mobile area that can be prone to injury. When it is injured, people with a combination of brain and neck injuries may have higher levels of sensitivity than patients with more routine neck pain. That means that people who suffer concussions and neck injuries may benefit from more precise and gentle care than approaches that take a more aggressive style of treatment.

 

Podcast Archives: Heart Rate Variability and Human Performance with Dr. Mike Nelson

 

Dr. Mike Nelson is a human performance expert and faculty member for the Carrick Institute. In this episode Mike discusses some of the hidden ways an athlete can get more from their bodies by modifying their training to match the demands of the brain and nervous system. We also get into the concept of metabolic flexibility. A great listen for anyone that is involved in training athletes or are aspiring athletes themselves.

Podcast Archives – Looking Beyond the Brain in Concussion with Dr. John Leddy

Podcast Archives – Episode 23b – 2015

Looking Beyond the Brain in Concussion with Dr. John Leddy

University of Buffalo Concussion Management Clinic

With the high school, NCAA, and NFL seasons right around the corner, I decided that we re-visit my favorite topic; concussions. This week we have a 2-episode special on concussions featuring one of the most sought after clinician experts in the country, and a fast growing name in the research of post-concussion syndrome. Dr. John Leddy is a concussion researcher with a sports medicine background out of the University of Buffalo. He’ll be talking about future considerations in concussion management that goes beyond treating the brain and making sure that we protect the neck.

Podcast Archive – Pro-Brain and Pro-Sports with Dr. Tad Seifert

Heal Yourself Radio Archives – Episode 23a- 2015

Pro-Brains and Pro-Sports with Headache and Concussion Expert Dr. Tad Seifert

Show Notes:

With the high school, NCAA, and NFL seasons right around the corner, I decided that we re-visit my favorite topic; concussions. This week we have a 2-episode special on concussions featuring one of the most sought after clinician experts in the country, and a fast growing name in the research of post-concussion syndrome. Episode 23a features Dr. Tad Seifert an expert in neurology and sports medicine. He’s combined his passion for sports and the brain to be a leader in the field of sports concussion. He’ll talk about his experience and what the evidence says about head injuries, and what you can do to better help prepare your athlete for their sports season.

What are the risk factors for poor outcomes after a concussion?

When patients suffer a concussion, the vast majority of patients will have symptoms for 10 days or less. About 10-15% of concussed patients will develop persistent symptoms and be diagnosed with post-concussion syndrome.

Thanks to an explosion in concussion research in the last 20 years, we know a lot more about these head injuries than we have in the past. While we don’t know the exact physical reasons why some people are more likely to suffer from post-concussion syndrome, we do know some specific risk factors for people developing persistent symptoms.

Here’s a short but important list of factors that may make a young athlete more susceptible to chronic concussion symptoms:

  1. Patients with a history of migraine headache
  2. Patients with a history bipolar or anxiety disorder
  3. Patients with a family history of bipolar or anxiety disorder
  4. Patients with a previous concussion

There’s a few interesting things to take away from this:

  • Having a history of migraine likely means that your nervous system will be more vulnerable to the headache and nausea experienced with concussion symptoms. It may also signal that you have a sensitivity in your neck to issues that may stimulate the headache process and can be worsened by head trauma.
  • The first is that mental health seems to be a major player in the future expression of post-concussive symptoms like headache and dizziness. It shows us the power that mental health can have on physical health problems.
  • There’s no association with the severity of the concussion or losing consciousness. While a more severe hit to the head or getting knocked out seem like they would predict worse recovery, the data suggests that it doesn’t play a significant role in the development of persistent symptoms.
  • A lot of people get their physical symptoms treated for post concussion symptoms by a variety of providers, but a lot of people ignore their psychological and cognitive treatments. Having someone that can help manage their anxiety appropriately and use cognitive behavioral interventions can help many patients benefit from their physical symptoms.

Don’t Forget: Health Is A 3 Legged Stool

It’s easy to think about health in terms of physical ailments, but your overall well being is dependent on physical, mental, and emotional health. There’s a reason why people with depression and anxiety have worse outcomes for every physical ailment that exists. If you have a poor mental and emotional outlook, your brain simply doesn’t mobilize it’s repairing and recuperative resources as effectively.

In the world of concussion we often talk about getting the right care for concussions linking it to cervical spine problems, vestibular problems, or brain problems. What we sometimes forget is that some of our susceptibility to illness is related to our belief in the fragility or resilience of our bodies. Let’s restore faith in the strength of our bodies and make ourselves more robust healing machines.

Cracking the Code on Lightheaded Dizziness

When people say that they feel dizzy, most people, even healthcare providers usually think that you’re talking about the room spinning sensation of vertigo. However, there are thousands of people around the country describe themselves as having dizziness but don’t have the characteristic sensation of vertigo. Many patients may describe their dizziness as a rocking, swaying, floating, or disoriented feeling. More than anything, people with dizziness have a feeling of being out of sorts if it’s not specifically related to vertigo.

In this article, we are going to breakdown a specific and very common feeling that people associate with dizziness. We are going to talk about lightheaded dizziness.

Orthostatic Intolerance – a blood flow issue

Most people have had a feeling of light headedness at some point in their life. It’s most commonly felt when people go from laying down to standing too quickly. Your head feels funny and you might feel your vision get dark for a moment. After a few seconds, the feeling passes and you probably won’t even think twice about it.

This sensation of feeling light headed on standing is called orthostatic hypotension or orthostatic intolerance.These are terms used to describe the fact that when you change positions, your blood pressure didn’t meet the brain’s demand for blood in that moment in time.

Your brain is a greedy organ when it comes to blood flow. Although it only makes up about 2-3% of the body’s total mass, the brain hogs about 20% of the body’s blood flow. Your blood pressure is not just a marker for the health of your heart, but the purpose of a tightly regulated blood pressure is to make sure that your brain is getting that 20% blood flow at all times. 

While people generally think of their heart as the main controller of blood pressure, it is actually your nervous system that keeps it tightly regulated. It’s so regulated, that in the moments right before you stand (when the idea of standing was just a thought), your brain is sending messages to your muscles and arteries to tighten up so it can keep your blood pressure constant when you are changing postures.

Pretty neat right?

While most people can have moments of lightheadedness like this from time to time, it usually goes away on its own. However, some people feel this sensation on a regular basis. It’s been estimated that anywhere between 4% young adults and 30% of older adults experience orthostatic intolerance. About 42% of people with a complaint of dizziness have a complaint of light headed dizziness related to standing. [Source]

Whether you feel like you’re  spinning, rocking, or light headed, a persistent feeling of dizziness can lead to feelings of anxiety and depression because of the impact on your daily life activities. Orthostatic hypotension is also associated with increased incidence of cardiovascular events and overall mortality, especially in the aging population where feinting and dizziness can lead to falls

Why Does Orthostatic Intolerance Happen?

So far, research has shown that the light headed feeling from orthostatic intolerance is a blood flow issue in the brain. We also know that the autonomic nervous system is a major role player in this problem as many patients with this form of dizziness will have abnormal findings on head upright table tilt testing as well as abnormal blood pressure findings when using a valsava maneuver. [Source]

For many of these cases, there is a problem in the regulation of the sympathetic or parasympathetic nervous system. This gets further complicated by the fact that people who experience orthostatic hypotension may have the same symptoms, but the neurological mechanism that is causing the symptoms are different. [Source]. In general terms, the sympathetic nervous system may have problems constricting your arteries on standing, or the parasympathetic system may have difficulties in regulating your cardiac output. That’s why many patients with orthostatic issues may get evidence-based treatment for the condition.

How Is It Treated?

This part is difficult, because unless you’re in an area that does specialized autonomic laboratories, many people don’t even know this condition exists. Many people get misdiagnosed with vertigo. Many others will just have their condition brushed off.

If you’re lucky enough to have someone that understands orthostatic issues, then you will likely be managed with a regiment of blood pressure medication and IV’s to help keep your blood pressure from tanking. This gets complicated if a patient has HYPERtension when they lie down which is obviously problematic to give therapies that will non-specifically increase your blood pressure.

A Neurological Approach

While many doctors are concerned with blood pressure numbers in of themselves, from a chiropractic perspective we ask why the body is having an abnormal autonomic response to changes in posture. This is particularly important when we are thinking about the head.

When the head and neck shift, it can disrupt normal proprioception into the brainstem and have wide ranging effects of the autonomic nervous system. Excessive twisting or rotation of the Atlas vertebrae may also affect the jugular vein and how blood flow returns to the heart leading to problems with the vagus nerve and cardiac output.

We have also seen patients with dysautonomia have small disturbances in the function of their vestibular system. In some cases patients with orthostatic hypotension can experience vertigo, but in many cases it simply makes head and eye movement far less efficient.

When we put this all together, we have found that a cervical-vestibular approach has the potential to create important improvements in the autonomic nervous system which can help patients overcome their poor relationship with gravity.

Tell us about your dizziness

Why is Cranio-facial pain worse than everything else?

Read time: 7-8 minutes

Outline:

  • Pain is weird
  • Chronic head and face pain and suicidality
  • Why head and face pain feels worse
  • The neuroscience of suffering

Pain is complicated. It’s even more complicated as a doctor because the expectation from years and years of conditioning is that when you have pain, then something about that painful body part must be damaged to cause it. When people are in pain, doctors are typically trained to identify things like a ruptured disc, broken bone, or torn muscle to validate a patients’ sense of suffering.

In this model, the more damage that is present = more pain. Less damage = less pain.

However, the experience of pain can be way more complex than finding damaged tissue. The experience of pain is an emotional response to ‘painful’ sensory receptors called nociceptors. Tissue damage can cause a lot of pain receptorsto fire, and trigger increased pain, but it is far from the only factor in the pain equation. We have to take pain into the context of cultural, social, cognitive, and experiential factors.

Which takes us to an important point.

The amount of pain you experience can also depend on what body part is injured. As we’ll see today, there are hardwired circuits in your brain that can make the experience of pain in the head/face a different and perhaps worse experience then pain from the body as a whole.

Chronic Facial Pain and Suicidality

Chronic pain is a known risk for suicidal ideation, and has been documented in numerous studies [source]. These thoughts have a higher chance of turning into behavior when you have chronic pain and a co-morbid mental health disorder [source].

This effect seems most pronounced when the source of the pain is coming from the head or face. Two disorders in particular are highly associated with suicidal thoughts and behavior; trigeminal neuralgia and cluster headaches. Trigeminal neuralgia has a high enough association that it was historically dubbed the ‘suicide disease’, while cluster headache has been known to be called the ‘suicide headache’.

Both of these illnesses are associated with some of the most intense pain that human beings can experience. The severity of the pain combined with the chronicity of the pain lead to a sense of despair because these disorders can be difficult to treat, so there is always a fear of the next attack.

Scientists have recently uncovered some neurological pathways that might explain why conditions like trigeminal neuralgia and cluster headaches can cause such disproportionate suffering compared to other body pains.

The Trigeminal Complex and the Limbic System

It’s been known that pain experienced in the head and face activate the emotional centers of the brain more than pain felt in the periphery of the body [source]. From an evolutionary standpoint, a higher state of pain in the head and neck region may have served a  purpose so that there would be extra vigilance in protecting this region of the body from injury. What was unknown was weather this heightened sense of protection was derived from a psycho-social factors, or if it was something that was hard wired into our nervous system.

Duke University scientists may have some answers. A 2017 study in Nature Neuroscience showed that neurons in the head and face have a direct pathway to the emotional circuits in the brain.

Scientists identified a direct connection between sensory fibers of the trigeminal nerve into a part of the brainstem called the parabrachial nucleus. The parabrachial nucleus has direct connections into the emotional hub of the brain in the amygdala, which is highly tied to fear and avoidance behavior.

Why is this important? Because direct, aka, monosynaptic connections are way more powerful sensory stimuli than indirect pathways.

Think of it this way:

Let’s say you were mailing a time-sensitive package that needed to get to it’s destination as soon as possible. Would you choose to overnight it by plane, or would you choose regular first-class mail?

Cranio-facial pain uses direct and indirect pathways that tap into the brain’s emotional responses to pain.

You probably chose to overnight it right? Why? Because it’s going to get there faster, and because the person receiving it is going to perceive that package as more important because it was sent with all of this overnight labeling implying it’s importance.

These direct pathways are like your overnight deliveries, where the indirect pathways are like ground shipping.

Our brains place a higher priority on signals coming from these monosynaptic pathways.

While other body regions only use an indirect path to the parabrachial nucleus, the trigeminal distribution uses both indirect AND direct pathways to stimulate this emotional hub.

That means that firing from nociceptive pain fibers in the trigeminal distribution, or even pathways that share trigeminal distribution will have a higher chance of driving an emotional response than pain fibers from the shoulder, back, hip, etc.

The Emotional Brain’s Influence On Pain

How big of an influence does emotion make in the experience of pain? In this study, the researchers stimulated pain receptors in the paw or in the face of mice using a chemical called formalin. Using a technique called optogenetics, researchers can selectively activate brain activity in a mouse model using different light frequencies.

When light activated the direct pathway, the mice showed more intense avoidance behavior to the formalin on the face. When light was used to knock out this pathway, the mice didn’t react as strongly.

So you have the same amount of pain stimulus, the same mouse, and it experiences pain differently because the path to the parabrachial nucleus was turned off.

It suggests that our emotional brain’s connection to a painful stimulus plays a substantial role in the experience of pain.

Biology vs Psychology

There’s always a debate about nature vs nurture when confronted with the struggles of human existence. In recent years, it has evolved into a debate between biomechanical/orthopedic search to treat identifiable lesions vs a biopsychosocial approach which generally tends to lean heavily on the psycho and social components of the pain experience.

Here is some evidence that suggests that the two are inseparably linked together.

The experience of pain is intimately tied to our thoughts, memories, expectations, and current mental state. If the experience of pain is tied to some of these neural circuits, then changing our mind activating our different neural circuits in the brain can change our experience of pain.

It also means that fear/avoidance behavior, and repetitive responses to painful stimuli may reinforce the neural circuits that generate the same pain over and over again.

Changing thoughts and behavior can have a significant impact on the perception of pain and the feelings of suffering for a persistent pain patient.

That doesn’t mean that we are just telling people in the midst of a terrible trigeminal neuralgia or cluster headache attack that they have to suck it up and think differently about their pain.

It means that when people have persistent pain disorders, in the process of treating patients with various interventions, we have to help and guide a patient through the process of re-framing their pain and illness.

This is really hard for patients with persistent pain. It means that sometimes we are walking a line where a patient may feel like we are telling them that the pain is just in their head. Sometimes it means that the patient is going to ask the same question, or tell you the same symptom over and over again because they’re looking for you to just understand that what they are feeling and that know that they’re being heard.

Trying to help a patient disassociate themselves from their chronic pain emotionally is challenging. After all, most of us didn’t become doctors and therapists to be a patient’s psychologist. However, empowering a patient with a stronger belief in the resilience of their body can be extremely fulfilling, and in my opinion puts people on the path to recovery while they’re in the process of receiving quality care.

Send us mail